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We must consider communication

Algorithms have two kinds of costs: computation and communication
moving data within memory hierarchy on a sequential computer
moving data between processors on a parallel computer

For high-level analysis, we need simple memory models:
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Runtime Model

Measure computation in terms
of # flops performed

Time per flop: γ

Measure communication in terms
of # words communicated

Time per word: β

Total running time of an algorithm (ignoring overlap):

γ · (# flops) + β · (# words)

β � γ as measured in time and energy, and the relative cost of
communication is increasing
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Why avoid communication

Annual Improvements in Time
Flop rate DRAM Bandwidth Network Bandwidth

γ β β

59% per year 23% per year 26% per year

Energy cost comparisons
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Lower bounds and algorithms

Suppose you have a bottleneck in a computation you care about,
how do you evaluate your options?

Performance models based on only computational complexity are no
longer sufficient—we must analyze communication costs.

Communication lower bounds and optimal algorithms are known for
some regular computations (e.g. matmul, FFT/sorting, SpMV, stencils),
but irregular (more data-dependent) computations are harder.
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Lower bounds for classical matrix multiplication

Assume Θ(n3) algorithm
Sequential case with fast memory of size M

lower bound on words moved between fast/slow mem:

Ω

(
n3
√

M

)
[Hong & Kung 81]

attained by blocked algorithm
Parallel case with P processors (local memory of size M)

lower bound on words communicated (along critical path):

Ω

(
n3

P
√

M

)
[Toledo et al. 04]

also attainable
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Extensions to the rest of linear algebra
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Theorem (B., Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Ω

(
# flops√

memory size

)

This result applies to
dense or sparse problems
sequential or parallel computers



Extensions to the rest of linear algebra
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Theorem (B., Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

# words = Ω

(
# flops√

memory size

)

What smells like 3 nested loops?

the rest of BLAS 3 (e.g. matrix multiplication, triangular solve)

Cholesky, LU, LDLT , LTLT decompositions

QR decomposition

eigenvalue and SVD reductions

sequences of algorithms (e.g. repeated matrix squaring)

graph algorithms (e.g. all pairs shortest paths)



Optimal algorithms - sequential Θ(n3) linear algebra

Computation Optimal
Algorithm

BLAS 3 blocked algorithms
[Gustavson 97]

Cholesky
LAPACK

[Ahmed & Pingali 00]
[BDHS10]

Symmetric LAPACK (rarely)
Indefinite [BBD+13]

LU
LAPACK (rarely)

[Toledo 97]∗

[Grigori et al. 11]

QR

LAPACK (rarely)
[Frens & Wise 03]

[Elmroth & Gustavson 98]∗

[Hoemmen et al. 12]∗

Eig, SVD [BDK12], [BDD11]
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Example practical speedups

Computing QR decomposition
up to 8× speedup on multicore, 3× speedup on GPU

Solving symmetric indefinite linear systems
up to 3× speedup on multicore

Rectangular matrix multiplication (classical)
up to 7× speedup on multicore

Solving the symmetric eigenproblem for band matrices
up to 6× speedup on multicore
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Strassen’s algorithm (1969)
Strassen showed how to use 7 scalar multiplies for 2× 2 matrix multiplication[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
Strassen’s Algorithm

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6
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Strassen’s algorithm (1969)
Strassen showed how to use 7 scalar multiplies for 2× 2 matrix multiplication[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
Classical Algorithm

M1 = A11 · B11

M2 = A12 · B21

M3 = A11 · B12

M4 = A12 · B22

M5 = A21 · B11

M6 = A22 · B21

M7 = A21 · B12

M8 = A22 · B22

C11 = M1 + M2

C12 = M3 + M4

C21 = M5 + M6

C22 = M7 + M8
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M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6
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Strassen showed how to use 7 scalar multiplies for 2× 2 matrix multiplication[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]

For n × n matrices, we split into
quadrants and use recursion

Flop count recurrence:

F (n) = 7 · F (n/2) + O(n2)

F (1) = 1

F (n) = O
(

nlog2 7
)

log2 7 ≈ 2.81
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Communication costs of matrix multiplication

Classical Strassen’s

Fast: Θ(nω0 ) flops
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Units = (max) words communicated
O = algorithm exists, Ω = lower bound exists, Θ = both exist

n = matrix dimension, M = fast/local memory size, P = number of processors
References:

[BDHS11], [BDH+12a], [BDH+12b], [BDHS12, BDHS14]
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Units = (max) words communicated
O = algorithm exists, Ω = lower bound exists, Θ = both exist

n = matrix dimension, M = fast/local memory size, P = number of processors
References: [BDHS11],

[BDH+12a], [BDH+12b], [BDHS12, BDHS14]
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Performance of optimal algorithms on large problem

Strong-scaling on a Cray XT4, n = 94,080
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Execution time of optimal algorithms on small problem

Strong-scaling on a Cray XE6, n = 4704
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How small can ω0 get?

People have worked on this problem for decades!
“fast” algorithms multiply matrices using O(nω0) flops, ω0 < 3

Most fast algorithms are only
theoretical because they

involve approximations
A · B = C + λE

are not explicit
only proofs of existence

have (possibly) large constants or
log factors

most theoreticians care about
only the exponent ω in O(nω+ε)

Exponent over time
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Practical Fast Algorithms

Strassen’s algorithm is practical

Many algorithms are better in theory, are any better in practice?

Can we find practical algorithms that have been overlooked?

Can we implement and benchmark all known algorithms?
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Fast algorithms are based on recursion
Strassen showed how to use 7 multiplies instead of 8 for 2× 2 multiplication[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
Classical Algorithm

M1 = A11 · B11

M2 = A12 · B21

M3 = A11 · B12

M4 = A12 · B22

M5 = A21 · B11

M6 = A22 · B21

M7 = A21 · B12

M8 = A22 · B22

C11 = M1 + M2

C12 = M3 + M4

C21 = M5 + M6

C22 = M7 + M8

Strassen’s Algorithm

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6
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Recursion allows us to focus on base case

2× 2× 2 [
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

multiplies 6 7 8

flop count O
(
n2.58) O

(
n2.81) O

(
n3)

3× 3× 3 a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33



multiplies 19 21 23 27

flop count O
(
n2.68) O

(
n2.77) O

(
n2.85) O

(
n3)
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multiplies 19 21 23 27

flop count O
(
n2.68) O

(
n2.77) O

(
n2.85) O

(
n3)
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Recursion allows us to focus on base case

2× 2× 2 [
a11 a12
a21 a22

] [
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]
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Searching for a base case algorithm

Finding a better base case corresponds to computing a low-rank
decomposition of a particular 3D tensor

= + … +  

T =
R∑

r=1

ur ◦ vr ◦wr

This is the main problem to solve
various ways to attack it, but basically a search problem
as base case gets bigger, tensor dimensions and rank get bigger
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Matrix multiplication as a tensor operation

A · B =

(
a11 a12
a21 a22

)
·
(

b11 b12
b21 b22

)
=

(
c11 c12
c21 c22

)
= C

is equivalent to

T ×1


a11

a12

a21

a22

×2


b11

b12

b21

b22

 =


c11

c12

c21

c22

 ×1 ×2 = 

where T is a 4× 4× 4 tensor with the following slices:

T1 =


1

1

 T2 =


1

1

 T3 =

1
1

 T4 =

 1
1



Ballard 19

Operation with low-rank decomposition



Low-rank decomposition for Strassen

T =
7∑

r=1

ur ◦ vr ◦wr

Strassen’s decomposition is represented by these 3 factor matrices:

U =


1 0 1 0 1 −1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 −1



V =


1 1 0 −1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 −1 0 1 0 1



W =


1 0 0 1 −1 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 −1 1 1 0 0 0
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Connection between factor matrices and algorithm

Strassen’s algorithm Strassen’s factor matrices:

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

U =


1 0 1 0 1 −1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 −1



V =


1 1 0 −1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 −1 0 1 0 1



W =


1 0 0 1 −1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 −1 1 0 0 1 0



U,V,W matrices encode the algorithm
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Connection between factor matrices and algorithm

Strassen’s algorithm Strassen’s factor matrices:

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

M1 M2 M3 M4 M5 M6 M7

U

A11 1 1 1 −1
A12 1 1
A21 1 1
A22 1 1 1 −1

V

B11 1 1 −1 1
B12 1 1
B21 1 1
B22 1 −1 1 1

W

C11 1 1 −1 1
C12 1 1
C21 1 1
C22 1 −1 1 1

U,V,W matrices encode the algorithm
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Main search problem

Given base case dimensions M, P, and N (multiplying M × P and
P × N matrices), the tensor T ∈ {0,1}MP×PN×MN is specified.

Then for some desired rank R < MNP, find

U ∈ FMP×R, V ∈ FPN×R, W ∈ FMN×R

such that

tijk =
R∑

r=1

uir vjr wkr for all i , j , k

(these (MNP)2 scalar constraints are equivalent to T =
∑

ur ◦ vr ◦wr )

solution corresponds to algorithm with ω0 = 3 logMPN R

Ballard 22
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Main search problem

Given base case dimensions M, P, and N (multiplying M × P and
P × N matrices), the tensor T ∈ {0,1}MP×PN×MN is specified.

Then for some desired rank R < MNP, find

U ∈ FMP×R, V ∈ FPN×R, W ∈ FMN×R

such that

tijk =
R∑
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solution corresponds to algorithm with ω0 = 3 logMPN R
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How do you solve it?

Problem: Find U, V, W such that T =
∑

ur ◦ vr ◦wr

the problem is NP-complete (for general T)

many combinatorial formulations of the problem

efficient numerical methods can compute low-rank approximations

typical approach is “alternating least squares” (ALS)
pitfall: getting stuck at local minima > 0
pitfall: facing ill-conditioned linear least squares problems
pitfall: numerical solution is good only to machine precision

we seek exact, discrete, and sparse solutions
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Alternating least squares with regularization

Most successful scheme due to Smirnov [Smi13]

Repeat
1

U = arg min
U

∥∥∥T(U) − U(W� V)T
∥∥∥2

F
+ λ

∥∥∥U− Ũ
∥∥∥2

F

2

V = arg min
V

∥∥∥T(V ) − V(W� U)T
∥∥∥2

F
+ λ

∥∥∥V− Ṽ
∥∥∥2

F

3

W = arg min
W

∥∥∥T(W ) −W(V� U)T
∥∥∥2

F
+ λ

∥∥∥W− W̃
∥∥∥2

F

Until convergence

Art of optimization scheme in tinkering with λ, Ũ, Ṽ, W̃ (each iteration)

Ballard 24



Discovered algorithms

Algorithm Multiplies Multiplies Speedup per
ω0base case (fast) (classical) recursive step

〈2,2,3〉 11 12 9% 2.89
〈2,2,5〉 18 20 11% 2.89
〈2,2,2〉 [Str69] 7 8 14% 2.81
〈2,2,4〉 14 16 14% 2.85
〈3,3,3〉 23 27 17% 2.85
〈2,3,3〉 15 18 20% 2.81
〈2,3,4〉 20 24 20% 2.83
〈2,4,4〉 26 32 23% 2.82
〈3,3,4〉 29 36 24% 2.82
〈3,4,4〉 38 48 26% 2.82
〈3,3,6〉 [Smi13] 40 54 35% 2.77
〈2,2,3〉* [BCRL79] 10 12 20% 2.78
〈3,3,3〉* [Sch81] 21 27 29% 2.77

Ballard 25



Example algorithm: 〈4,2,4〉

Partition matrices like this:
A11 A12
A21 A22
A31 A32
A41 A42

[B11 B12 B13 B14
B21 B22 B23 B24

]
=


C11 C12 C13 C14
C21 C22 C23 C24
C31 C32 C33 C34
C41 C42 C43 C44


1 Take 26 linear combos of Aij ’s according to U (68 adds)
2 Take 26 linear combos of Bij ’s according to V (52 adds)
3 Perform 26 multiplies (recursively)
4 Take linear combos of outputs to form Cij ’s acc. to W (69 adds)

Classical algorithm performs 32 multiplies yielding a possible speedup of 23% per step
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How do these algorithms perform in practice?

All these algorithms have the same structure:
perform additions according to U, V, W, and make recursive calls

Code generator can translate U, V, W into an implementation

Sequential performance is based on:
classical multiplication implementation performance (vendor library)
efficiency of additions
crossover point of fast to classical

Parallel performance depends also on parallelization approach
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Classical performance

Intel’s Math Kernel Library (MKL) dgemm
Square Matrix Multiplication (Sequential)
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shape of dgemm curve gives rule of thumb for crossover point

Ballard 28



Performing (and optimizing) additions

Additions are completely memory bandwidth bound
time is proportional to communication (flops are free)

We micro-benchmarked three approaches:
1 Pairwise: most straightforward
2 Streaming: minimizes communication (in theory)
3 Write-once: best performance

We also considered common subexpression elimination
1 can help pairwise and streaming approaches
2 often hurts write-once approach
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Write-once approach to additions

A11	   A12	   A21	   A22	  

S1	   S2	   S7	  S6	  S5	  S4	  S3	  

S1 = A11 − A12 + A22

S2 = A21 − A22

...

Ballard 30



Sequential performance of fast algorithms

Square Matrix Multiplication
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Sequential performance of fast algorithms

Square Matrix Multiplication
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Sequential performance of fast algorithms

Rectangular Matrix Multiplication
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Parallelization schemes: recursion tree traversal

C	  

M1	   M7	  

+ 

M2	   …  
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+ 
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+ 

M2	   …  

C	  

M1	   M7	  

+ 

M2	   …  

M1	   M7	  

+ 

M2	   …  
All threads 

C	  

M1	   M7	  

+ 

M2	   …  
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+ 

M2	   …  
1 thread 1 thread 1 thread 

C	  

M1	   M7	  

+ 

M2	   …  
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M2	   …  
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We consider 3 methods for shared-memory parallelization,
based on traversing recursion tree



Parallelization schemes: recursion tree traversal
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DFS: depth first search is simplest scheme
all parallelism in calls to dgemm, always load balanced
requires large subproblems for high performance



Parallelization schemes: recursion tree traversal
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BFS: breadth first search relies on sequential dgemm
maintains high performance for small subproblems
load balancing of multiplies is no longer guaranteed

2 steps of Strassen creates 49 subproblems; we have 24 cores



Parallelization schemes: recursion tree traversal
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HYBRID
use BFS as much as possible
use DFS to load balance leftovers

2 steps of Strassen creates 49 subproblems; we have 24 cores



Parallel performance of fast algorithms

    0  5000 10000 15000
0

5

10

15

20

25

Dimension (n)

E
ff
e
c
ti
v
e
 G

F
L
O

P
S

 /
 c

o
re

Parallel performance of Strassen on <n,n,n>

 

 

MKL, 6 cores

MKL, 24 cores
DFS, 6 cores

BFS, 6 cores
HYBRID, 6 cores

DFS, 24 cores
BFS, 24 cores

HYBRID, 24 cores

at 24 threads, not only are the additions bandwidth bound, but they don’t scale
as well as the multiplies (bandwidth scaling is < 6×)
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Parallel performance of fast algorithms
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Conclusions

in theory, fast algorithms reduce both computation and
communication

in practice, fast algorithms like Strassen’s can outperform dgemm

for square matrices, Strassen’s algorithm is hard to beat

for rectangular matrices, algorithm should match the shape

shared-memory parallelization faces bandwidth bottleneck
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Open questions

1 What are the numerical properties of all these algorithms?

2 How will they perform on distributed-memory parallel
architectures?

3 Have we exhausted the possibilities of practical fast algorithms?

4 Can we use fast algorithms in the context of linear algebra and
other applications?
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Communication-Avoiding Algorithms
and Fast Matrix Multiplication

Grey Ballard
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Extra slides

1 Optimal Parallel Algorithms

2 Matmul-as-tensor-operation using low-rank decomposition

3 Classical algorithm’s factor matrices

4 Bini’s factor matrices

5 Code generator performance comparison

6 Parallel performance for rectangular shapes
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Algorithms - Parallel Θ(n3) Linear Algebra

Algorithm Reference
Factor exceeding Factor exceeding
lower bound for lower bound for

# words # messages
Matrix Multiply [Can69] 1 1

Cholesky ScaLAPACK log P log P
Symmetric [BBD+13] ? ?
Indefinite ScaLAPACK log P (N/P1/2) log P

LU [GDX11] log P log P
ScaLAPACK log P (N/P1/2) log P

QR [DGHL12] log P log3 P
ScaLAPACK log P (N/P1/2) log P

SymEig, SVD [BDK12] ? ?
ScaLAPACK log P N/P1/2

NonsymEig [BDD11] log P log3 P
ScaLAPACK P1/2 log P N log P

*This table assumes that one copy of the data is distributed evenly across processors

Red = not optimal Local 

Local Local 

Local 

Local Local Local 

Local 

Local 
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Matmul-as-tensor-operation using low-rank
decomposition

Here’s the matrix multiplication as tensor operation again:

T ×1 a×2 b = c

Here’s our low-rank decomposition:

T =
R∑

r=1

ur ◦ vr ◦wr

Here’s an encoding of our new matrix multiplication algorithm:

T ×1 a×2 b =
R∑

r=1

(ur ◦ vr ◦wr )×1 a×2 b =
R∑

r=1

(aT ur ) · (bT vr ) ·wr
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Connection between factor matrices and algorithm

Classical algorithm: Classical factor matrices:

M1 = A11 · B11

M2 = A12 · B21

M3 = A11 · B12

M4 = A12 · B22

M5 = A21 · B11

M6 = A22 · B21

M7 = A21 · B12

M8 = A22 · B22

C11 = M1 + M2

C12 = M3 + M4

C21 = M5 + M6

C22 = M7 + M8

U =


1 1

1 1
1 1

1 1



V =


1 1

1 1
1 1

1 1



W =


1 1

1 1
1 1

1 1
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Factor matrices for an approximate algorithm (Bini’s)

U =


1 0 1 0 1 0 0 0 0 0
0 0 0 λ λ 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1
1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 λ λ
0 0 0 0 0 1 1 0 1 0



V =


λ 0 0 −λ 0 1 1 −1 1 0
0 0 0 0 λ 0 0 −1 0 1
0 −1 0 1 0 0 0 0 λ 0
1 −1 1 0 1 λ 0 0 0 −λ



W =



1
λ

1
λ
− 1
λ

1
λ

0 0 0 0 0 0
0 0 − 1

λ
0 1

λ
0 0 0 0 0

0 0 0 1 0 1 0 0 −1 0
1 0 0 0 −1 0 0 0 0 1
0 0 0 0 0 0 − 1

λ
0 1

λ
0

0 0 0 0 0 1
λ
− 1
λ

1
λ

0 1
λ



Ballard 42

Extras



Code generated vs tuned performance
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Parallel performance of fast algorithms
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Parallel performance of fast algorithms

 5000 10000 15000 20000
0

5

10

15

20

25

Dimension (n)

E
ff
e
c
ti
v
e
 G

F
L
O

P
S

 /
 c

o
re

Parallel performance of <4,3,3> on <n,3000,3000>

 

 

MKL, 6 cores

MKL, 24 cores
DFS, 6 cores

BFS, 6 cores
HYBRID, 6 cores

DFS, 24 cores
BFS, 24 cores

HYBRID, 24 cores

Ballard 44

Back Extras



References I

G. Ballard, D. Becker, J. Demmel, J. Dongarra, A. Druinsky, I. Peled, O. Schwartz, S. Toledo, and I. Yamazaki.
Communication-avoiding symmetric-indefinite factorization.
Technical Report UCB/EECS-2013-127, EECS Department, University of California, Berkeley, July 2013.

D. Bini, M. Capovani, F. Romani, and G. Lotti.

O(n2.7799) complexity for n × n approximate matrix multiplication.
Information Processing Letters, 8(5):234 – 235, 1979.

G. Ballard, J. Demmel, and I. Dumitriu.
Communication-optimal parallel and sequential eigenvalue and singular value algorithms.
Technical Report EECS-2011-14, UC Berkeley, February 2011.

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Brief announcement: strong scaling of matrix multiplication algorithms and memory-independent communication lower
bounds.
In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 77–79, New
York, NY, USA, 2012. ACM.

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Communication-optimal parallel algorithm for Strassen’s matrix multiplication.
In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 193–204,
New York, NY, USA, 2012. ACM.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Communication-optimal parallel and sequential Cholesky decomposition.
SIAM Journal on Scientific Computing, 32(6):3495–3523, 2010.

Ballard 45



References II

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast matrix multiplication.
In Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 1–12. ACM,
2011.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast matrix multiplication.
Journal of the ACM, 59(6):32:1–32:23, December 2012.

Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz.
Communication costs of strassen’s matrix multiplication.
Commun. ACM, 57(2):107–114, February 2014.

G. Ballard, J. Demmel, and N. Knight.
Communication avoiding successive band reduction.
In Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, PPoPP ’12,
pages 35–44, New York, NY, USA, 2012. ACM.

L. Cannon.
A cellular computer to implement the Kalman filter algorithm.
PhD thesis, Montana State University, Bozeman, MN, 1969.

Paolo D’Alberto, Marco Bodrato, and Alexandru Nicolau.
Exploiting parallelism in matrix-computation kernels for symmetric multiprocessor systems: Matrix-multiplication and
matrix-addition algorithm optimizations by software pipelining and threads allocation.
ACM Trans. Math. Softw., 38(1):2:1–2:30, December 2011.

Ballard 46



References III

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU factorizations.
SIAM Journal on Scientific Computing, 34(1):A206–A239, 2012.

L. Grigori, J. Demmel, and H. Xiang.
CALU: A communication optimal LU factorization algorithm.
SIAM Journal on Matrix Analysis and Applications, 32(4):1317–1350, 2011.

A. Schönhage.
Partial and total matrix multiplication.
SIAM Journal on Computing, 10(3):434–455, 1981.

A.V. Smirnov.
The bilinear complexity and practical algorithms for matrix multiplication.
Computational Mathematics and Mathematical Physics, 53(12):1781–1795, 2013.

V. Strassen.
Gaussian elimination is not optimal.
Numerische Mathematik, 13:354–356, 1969.
10.1007/BF02165411.

Ballard 47


	Communication Costs: Lower Bounds & Algorithms
	Strassen's Matrix Multiplication: Theory & Practice
	Searching for Fast Matrix Multiplication
	Practical Performance of Fast Matrix Multiplication

